[Best] Heat Treatment Process PPT

0

Download Heat Treatment Process PPT with their types. Heat Treatment Processes are important topic in material science for mechanical engineers as well civil engineers. so download Heat Treatment Process PPT for each process.

Engineering properties are modified by heat treatment processes so that structural components are able withstand specified operating conditions and have desired useful life. Heat treatment is the heating and cooling of metals to change their physical and mechanical properties, without letting it change its Heat Treatment
shape. Heat treatment could be said to be a method for strengthening materials but could also be used to alter some mechanical properties such as improving formability, machining, etc. The most common application is metallurgical but heat treatment can also be used in manufacture of glass, aluminum, steel and many more materials.

The various types of heat-treating processes are similar because they all involve the heating and cooling of metals; they differ in the heating temperatures and the cooling rates used and the final results. The usual methods of heat-treating ferrous metals (metals with iron) are annealing, normalizing, hardening, and tempering. Most nonferrous metals can be annealed, but never tempered, normalized, or case-hardened. Successful heat treatment requires close control over all factors affecting the heating and cooling of a metal. This control is possible only when the proper equipment is available. The furnace must be of the proper size and type and controlled, so the temperatures are kept within the prescribed limits for each operation. Even the furnace atmosphere affects the condition of the metal being heat-treated.

 

STAGES OF HEAT TREATMENT

Heat treating is accomplished in three major stages:

Stage l—Heating the metal slowly to ensure a uniform temperature

Stage 2—Soaking (holding) the metal at a given temperature for a given time and cooling the metal to room temperature

Stage 3—Cooling the metal to room temperature

 

TYPES OF HEAT TREATMENT

 

 

 

Download types of Heat Treatment Process PPT -01

Download types of Heat Treatment Process PPT 02

 

ANNEALING

In general, annealing is the opposite of hardening, You anneal metals to relieve internal stresses, soften them, make them more ductile, and refine their grain structures. Annealing consists of heating a metal to a specific temperature, holding it at that temperature for a set length of time, and then cooling the metal to room temperature.

Annealing involves treating steel up to a high temperature, and then cooling it very slowly to room temperature, so that the resulting microstructure will possess high ductility and toughness, but low hardness. Annealing is performed by heating a component to the appropriate temperature, soaking it at that temperature, and then shutting off the furnace while the piece is in it. Steel is annealed before being processed by cold forming, to reduce the requirements of load and energy, and to enable the metal to undergo large strains without failure.

annealing PPT

HARDENING

The hardening treatment for most steels consists of heating the steel to a set temperature and then cooling it rapidly by plunging it into oil, water, or brine. Most steels require rapid cooling (quenching) for hardening but a few can be air-cooled with the same results. Hardening increases the hardness and strength of the steel, but makes it less ductile. Generally, the harder the steel, the more brittle it becomes. To remove some of the brittleness, you should temper the steel after hardening. Many nonferrous metals can be hardened and their strength increased by controlled heating and rapid cooling. In this case, the process is called heat treatment, rather than hardening. To harden steel, you cool the metal rapidly after thoroughly soaking it at a temperature slightly above its upper critical point. The addition of alloys to steel decreases the cooling rate required to produce hardness. A decrease in the cooling rate is an advantage, since it lessens the danger of cracking and warping.

surface hardening processes

NORMALIZING

Normalizing is a type of heat treatment applicable to ferrous metals only. It differs from annealing in that the metal is heated to a higher temperature and then removed from the furnace for air cooling. The purpose of normalizing is to remove the internal stresses induced by heat treating, welding, casting, forging, forming, or machining. Stress, if not controlled, leads to metal failure; therefore, before hardening steel, you should normalize it first to ensure the maximum desired results. Usually, low-carbon steels do not require normalizing; however, if these steels are normalized, no harmful effects result. Castings are usually annealed, rather than normalized; however, some castings require the normalizing treatment. Table 2-2 shows the approximate soaking periods for normalizing steel. Note that the soaking time varies with the thickness of the metal.

Normalizing process PPT

CYANIDING.—

This process is a type of case hardening that is fast and efficient. Preheated steel is dipped into a heated cyanide bath and allowed to soak. Upon removal, it is quenched and then rinsed to remove any residual cyanide. This process produces a thin, hard shell that is harder than the one produced by carburizing and can be completed in 20 to 30 minutes vice several hours. The major drawback is that cyanide salts are a deadly poison.

NITRIDING.—

This case-hardening method produces the hardest surface of any of the hardening processes. It differs from the other methods in that the individual parts have been heat-treated and tempered before nitriding. The parts are then heated in a furnace that has an ammonia gas atmosphere. No quenching is required so there is no worry about warping or other types of distortion. This process is used to case harden items, such as gears, cylinder sleeves, camshafts and other engine parts, that need to be wear resistant and operate in high-heat areas.

Case Hardening

Case hardening produces a hard, wear-resistant surface or case over a strong, tough core. The principal forms of casehardening are carburizing, cyaniding, and nitriding. Only ferrous metals are case-hardened. Case hardening is ideal for parts that require a wear-resistant surface and must be tough enough internally to withstand heavy loading. The steels best suited for case hardening are the low-carbon and low-alloy series. When high-carbon steels are case-hardened, the hardness penetrates the core and causes brittleness. In case hardening, you change the surface of the metal chemically by introducing a high carbide or nitride content. The core remains chemically unaffected. When heat-treated, the high-carbon surface responds to hardening, and the core toughens.

CARBURIZING.—

Carburizing is a case-hardening process by which carbon is added to the surface of low-carbon steel. This results in a carburized steel that has a high-carbon surface and a low-carbon interior. When the carburized steel is heat-treated, the case becomes hardened and the core remains soft and tough.

Flame Hardening

Flame hardening is another procedure that is used to harden the surface of metal parts. When you use an oxyacetylene flame, a thin layer at the surface of the part is rapidly heated to its critical temperature and then immediately quenched by a combination of a water spray and the cold base metal. This process produces a thin, hardened surface, and at the same time, the internal parts retain their original properties. Whether the process is manual or mechanical, a close watch must be maintained, since the torches heat the metal rapidly and the temperatures are usually determined visually.

TEMPERING

After the hardening treatment is applied, steel is often harder than needed and is too brittle for most practical uses. Also, severe internal stresses are set up during the rapid cooling from the hardening temperature. To relieve the internal stresses and reduce brittleness, you should temper the steel after it is hardened. Tempering consists of heating the steel to a specific temperature (below its hardening temperature), holding it at that temperature for the required length of time, and then cooling it, usually instill air. The resultant strength, hardness, and ductility depend on the temperature to which the steel is heated during the tempering process.

 

Download types of Heat treatment processes pdf

SHARE

Mechanical Geek is a website which main intention is to help Student studying mechanical engineering. Here you can find Mechanical Engineering Books PDF, Seminar Topics PPT, Concept, Materials, Objective Questions etc. so if you want to contribute just join our Facebook group and post there. Thanks.

LEAVE A REPLY

Please enter your comment!
Please enter your name here